试论航天精神体系上论文,菁选3篇

时间:2023-02-22 13:35:08 来源:网友投稿

试论航天精神体系(上)论文1  摘要:  本文扼要引见航空航天范畴热防护技术的开展概略,重点引见碳/碳复合资料、多孔纤维陶瓷资料、陶瓷基复合资料、热涂层技术、隔热资料、轻质烧蚀资料等,并对热防护技术下面是小编为大家整理的试论航天精神体系上论文,菁选3篇,供大家参考。

试论航天精神体系上论文,菁选3篇

试论航天精神体系(上)论文1

  摘要:

  本文扼要引见航空航天范畴热防护技术的开展概略,重点引见碳/碳复合资料、多孔纤维陶瓷资料、陶瓷基复合资料、热涂层技术、隔热资料、轻质烧蚀资料等,并对热防护技术的开展趋向作扼要评述。

  关键词:

  热防护技术;碳泡沫资料;多孔纤维陶瓷;陶瓷基复合资料;热障涂层;隔热资料;轻质烧蚀资料

  前言

  在航空航天范畴,航天飞行器以高马赫数穿越稠密大气层飞行,飞行器外表会产生严重的气动加热,容易产生热损伤。因而热防护技术是航空航天范畴至关重要的关键技术之一。

  在航空航天范畴,热防护主要采用防隔热资料的方式。下面扼要引见目前比拟前沿的几种防隔热资料,轻质烧蚀资料、碳泡沫资料、多孔纤维陶瓷、陶瓷基复合资料、无机纤维隔热资料等的开展现状与应用。

  1热防护资料开展概略

  烧蚀类热防护资料发张历史较长,应用较普遍,如以纤维为加强填充资料的纤维加强酚醛资料和以酚醛树脂为粘合剂的热防护复合资料。目前应用最普遍的是纤维加强酚醛资料[1]。传统的烧蚀热防护是以牺牲热防护资料质量来换取防热的效果,无法应对当今航天器外形不变的请求,于是提出了非烧蚀资料的概念。非烧蚀资料是一种能够反复应用的新型热防护资料。关于该种资料来说,提高极限运用温度和高温性能、提高标明抗辐射、抗氧化才能、防隔热一体化和能量引导耗散机制的分离是目前研讨的热点和重点[2]。

  因而下面将先简单引见一下轻质烧蚀资料,然后重点引见几种非热烧蚀资料,如碳泡沫资料、多孔纤维陶瓷、陶瓷基复合资料、无机纤维隔热资料以及热涂层技术。

  2轻质烧蚀资料[3]

  2.1基体资料。基体是烧蚀资料的主要组成局部,不只能将资料中的各种组分分离成型,其性能好坏还直接影响整体构造性能。轻质烧蚀资料的基体资料普通包括弹性体和树脂基体两大类。

  弹性体基体主要是各种橡胶及其混合物。硅橡胶具有延展率高、耐烧蚀和抗高温燃气冲刷的性能优点。但是,硅橡胶有密度较高、机械强度低和界面粘性差等缺陷,因而应用遭到一定限制。为此,研讨人员对硅橡胶进行了大量的改性研讨,其中改性的开展方向之一是共混改性,使烧蚀后碳层愈加致密、巩固,提高了烧蚀性能。

  树脂基体烧蚀资料普通具有高芳基化、高分子质量、高C/O比、高交联密度,高残碳率等特性,是一类性能优良的烧蚀资料。目前较为成熟的树脂基体主要有硅树脂、酚醛树脂以及新型的聚芳基乙炔树脂等。

  2.2填料。作为烧蚀资料另一重要组成局部,填料主要起着提高烧蚀资料的机械性能、降低绝热层的导热系数、提高隔热效率、加强碳化层耐高温燃气冲刷性能和降低烧蚀率等作用。

  3碳泡沫资料

  碳泡沫主要有两种形态:一种是韧带网络型泡沫,另一种是微球型碳泡沫。

  3.1韧带网络型泡沫。韧带网络型碳泡沫是一种石墨加强韧带网络型泡沫资料。该泡沫以沥青或聚合物等作为先驱体,经过石墨化和高温炭化处置,将无定形碳转化为多孔石墨韧带微构造,构成网状泡沫韧带,其性能与构造优于现有的碳/碳复合资料[1]。该种碳泡沫资料具有以下特性:一是泡沫和韧带是恣意排列于三维空间,因而具有各向同性的力学性能;二是韧带具有纤维构造的性能特征。并且这种碳泡沫资料的热导率大约是铜的6倍,是一种良好的导热泡沫资料。

  3.2微球型碳泡沫。空心碳微球泡沫是以高残碳树脂或中间相沥青为先驱体,先制成几何尺寸为微米的纳米级的空心微球,再用恰当的树脂作粘合剂将其注模成型,在氮气和氩气的氛围中经1100―2400℃的碳化和石墨化,得到空心微球构造的碳泡沫,当将其从室温高速加热到3100℃时,这种资料依然具有良好的力学性能,导热率较低,且由于微球大多是开孔的,力学性能欠佳。但用甲阶酚醛树脂为原型,经过微胶囊法先制备出酚醛树脂空心微球,注模成型,再经过碳化和石墨化处置,所制得的碳泡沫资料中的微球均是闭孔的,隔热性能和力学性能更为理想。

  4多孔纤维陶瓷

  多孔陶瓷具有化学性质稳定、比外表积大、耐热才能强、密度较低、刚度高、热导率低等优点,并且在力学、化学、热学、光学、电学等方面具有共同的性能,目前在别离过滤、换热、载体、蓄热、吸声隔音、隔热、曝气、电极、传感器、生物植入等诸多方面都有着普遍的应用。在航空航天范畴也不例外,如热防护系统中应用多孔陶瓷热障资料,在飞行器外壳隔热、发汗冷却构件、燃气轮机高温合金部件外表热防护等方面,可起到低金属外表温度、提高燃气工作温度、改善燃气效率、延长热端部件运用寿命的重要作用。

  多孔纤维陶瓷具有各向异性的导热性能,有很多应用。作为热防护资料的陶瓷热障,因其导热的各向异性,在厚度方向上热导率较小,在垂直于厚度方向上的热导率较大,可以起到隔热和均布外表温度的效果,依据文献[4]中的计算和实验标明,多孔纤维陶瓷资料在一个方向的热导率是另一个方向的3倍左右,因而在厚度方向能够有效隔热的同时,还能够在外表方向上均布温度场,能十分有效的避免部分高温的呈现。

  5陶瓷基复合资料

  陶瓷基复合资料是在陶瓷集体中引入第二相资料所构成的的多相复合资料。在陶瓷中参加纤维能大幅度提高资料的强度、改善陶瓷资料脆的缺陷,并提高运用温度。因而陶瓷基复合资料不只具有陶瓷耐高温、抗氧化、耐磨、耐腐蚀的优点,同时由于纤维的引入,时其具有相似金属的断裂行为,对裂纹不敏感,克制普通陶瓷资料脆性大、牢靠性差的致命弱点[5]。

  克制陶瓷脆性的办法主要包括连续纤维增韧、想变增韧、微裂纹增韧以及晶须晶片增韧等。其中连续纤维增韧碳化硅基复合资料是目前最受关注的陶瓷基复合资料。

  连续纤维加强陶瓷基复合资料具有高比强、高比模、高牢靠性、耐高温等优点,曾经成为军事、航天、能源等范畴理想的高温构造资料。主要应用于发起机熄灭室、喉衬、喷管等热构造件以及飞行器机翼前缘、控制面、机身顶风面、鼻锥等防热构件。

  6无机纤维隔热资料

  隔热资料分为刚性隔热资料和柔性隔热资料,其中刚性隔热资料的研讨曾经根本成熟,这里主要引见柔性隔热资料。

  近几年比拟受关注的新型隔热资料有:纳米隔热资料和功用梯度资料。

  纳米隔热资料由于其共同的微构造特征赋予了资料极端优良的隔热性能。艾姆斯研讨中心、马赛尔空间飞行中心和肯尼迪空间中心分别展开了纳米隔热资料的研讨工作。在1999年时纳米隔热资料的研讨就曾经到达了相当成熟的阶段。在适用化方面,纳米隔热资料曾经胜利应用于火星探测器的个别温度敏感部件及星云捕获器上。此外德国、瑞典、以色列、日本等国也展开了新型纳米隔热资料的研讨工作。目前曾经报道的常温常压下纳米隔热资料最低的热导率为0.013W/(mk),比静止空气的低一半。有材料报道的纳米隔热资料的运用温度普通都小于500℃,机械强度比拟差。进一步提高纳米隔热资料的运用温度及其它综合性能将是今后研讨工作的重点。

  功用梯度资料的是由日本学者*井敏雄等在20世纪80年代首先提出的,他们最初打算将该资料应用于航天飞机的热防护系统和发起机的热端部件。功用梯度资料一种其构成资料的要素组成和构造沿厚度方向由一侧向另一侧呈连续变化,从而使资料的性能也呈梯度变化的新型资料。功用梯度资料在处理航空航天资料耐热性、短命命、隔热性和强韧性等特性时显现了非常宏大的应用潜力。在导热系数到达设计请求的前提下,它能克制多层热防护资料之间的层间缺陷和小块资料之间衔接艰难的缺乏。这应该是会成为将来航空航天热防护系统新一代的隔热资料。

  7热障涂层技术

  当今航空发起机的主要开展方向之一是提高发起机涡轮行进口温度,以此来提高发起机的热效率。但随着涡轮行进口温度的提高,发起机热端部件所禁受的燃气温度和燃气压力不时提高。从上世纪40年代到上世纪末,航空发起机的工作温度快速上升,燃气温度已超越1650℃。估计很快将到达1930℃。这样高的温度曾经大大超越现有合金的极限工作温度,因而,必需采用相应的措施。

  一方面,能够向上面提到的一样继续研制新型高温资料,提高高温合金的耐热性能;另一方面,采用先进的冷却技术,如叶片冷却气膜设计及制造工艺的改良。在过去的50多年中,隔热资料对提高发起机工作温度曾经做出了很大奉献。但是在当前运用的发起机的工作温度下,燃气温度已超越镍基合金的熔点,基体资料自身以及发起机构造设计的改良使高温合金以至单晶高温合金简直已到达其耐热极限,因而要想经过合金资料大幅度提高热端部件、特别是叶片的工作温度曾经极端艰难。70年代先进气膜冷却技术也由于高性能发起机的开展,发起机中可用冷气流量越来越少,依托气膜冷却技术进一步提高降温效果已没有太大的空间。在这种状况下,为了满足先进航空发起机对资料更苛刻的性能请求,热障涂层技术得到了普遍的应用和开展。

  热障涂层是有导热性较差的陶瓷氧化物和起粘性作用的底层组成的防热系统,能够明显降低基体温度,具有硬度高、高化学稳定性等优点,可以避免高温腐蚀、延长热端部件的运用寿命,提高发起机功率和减少燃油耗费。

  热障涂层的制备技术主要有:常规等离子喷涂、高能等离子喷涂、低压等离子喷涂、电子束物理气相堆积等[6]。

  目前,已获实践工程应用的双层构造热障涂层的资料体系主要由4个资料基元组成:高温合金基体、陶瓷层、基体与涂层间的金属粘结层及在陶瓷涂层与过渡层之间构成的热生长氧化层(以氧化铝为主要物质成分)。其中,合金基体主要接受机械载荷;陶瓷涂层是隔热资料;粘结层在涂层受热和冷却过程中能缓解基体与陶瓷层的热不匹配。在热循环载荷作用下,各资料基元间遵照动力学原理互相作用,以动态均衡方式控制整体资料的热力学性能和运用寿命。

  8完毕语

  在航空航天范畴,热防护是重要研讨课题之一,随着新一代航天器的研发,对热防护提出了越来越高的请求。在研讨传统防热资料的同时,许多新型资料相继被人们关注。上面提到的碳泡沫资料、多孔纤维陶瓷、陶瓷基复合资料、隔热资料、轻质烧蚀资料都是十分有前景的防热资料,在将来的航空航天范畴中将继续发挥越来越大的作用。同时,冷却和热涂层技术也将会不时完善已面对新的请求。

试论航天精神体系(上)论文2

  一、引言。

  当前,伴随着三维数字化设计制造技术带来的传统产品研制模式的重大变革,基于模型的定义(ModelBasedDefinition,MBD)技术正向着可以实现产品整个生命周期中各个阶段的数据、过程定义与交换的全数字化方向发展。近年来我国的航天制造业数字化紧跟现今数字化制造发展方向,在产品的三维数字化协同设计、基于三维产品模型的工艺设计、产品数据和生产过程管理等方面取得了一定的成效,但也应意识到,面向产品全生命周期的数字化尚未实现,全数字化的三维设计制造模式仍未形成,数字化仿真技术对数字化制造的促进效果仍不明显,数字化技术的巨大效能远未发挥。对于离散型航天制造型企业,应重点从生产系统仿真技术、工艺设计仿真技术、装备设计仿真技术、质量检测仿真技术四方面深入开展数字化仿真技术的探索和应用工作。现阶段需要着重解决以下几方面的问题:

  a、如何利用生产系统仿真技术详细验证工厂规划、车间布局方案可行性,降低固定资产投资和技术改进风险;

  b、如何利用工艺设计仿真技术减少产品研制初期的设计更改、工艺更改和试验件生产,并为产品装配现场提供可视化的三维工艺指导;

  c、如何通过利用装备设计仿真技术解决大型产品、工装验证成本高,设计周期长的问题;

  d、如何利用质量检测仿真技术提高产品的尺寸质量,降低产品的生产成本,提高零部件合格率并在产品批产前及时发现质量控制上的潜在隐患。

  二、生产系统仿真技术。

  生产系统仿真是指利用计算机仿真技术和虚拟现实技术,在虚拟空间内对制造系统元素(包括设备和人)布置的合理性和原材料转化过程(包括加工、流转、装配)的流畅性进行验证和优化,计算各工位产能和物料流动时间并实现最优生产线*衡,以指导工艺布局、工艺物流和生产规划的技术。生产系统仿*要包括工艺布局仿真、工艺物流仿真和生产计划验证三个方面。

  在生产计划中,基于数字化工厂的生产系统仿真技术可应用到复杂生产系统运行过程中的生产计划制定当中,通过专门的生产系统仿真软件在对工厂及设备建模后,可以实现对生产调度的仿真,从而可实现在特定调度指令下,对车间的设备、耗能、人员分工情况进行分析,为调度指令的进一步优化提供必要的数据支持。也可应用到已有生产系统的改进中,通过生产系统仿真技术可以改进现有车间的布局、流程、人员配置等,从而达到提高生产效率、提高空间和设备利用率、适应更多品种产品生产等目的;此外,数字化仿真技术还可应用到工艺布局与规划中,基于数字化仿真技术的数字化工厂规划技术可将传统的基于手工和经验的设计规划转变为基于计算机仿真和优化的精确可靠地规划设计,从而有效减少工厂与工艺规划的时间,缩短生产准备周期,优化车间布局,减少工程更改量,降低了开发成本和投资风险。

  三、工艺设计仿真技术。

  在产品工艺设计与规划上,基于MBD的数字化仿真技术是三维数字化工艺设计中实现的工艺过程验证与优化的关键环节。通过引入有限元分析、干涉检测等手段,可以充分利用三维模型进行铸造、锻造、机加、钣金、铆接、焊接、总装等多专业的工艺仿真与验证,以获得最优的工艺参数。例如,在切削加工过程的工艺验证与优化上,利用几何仿真优化技术可以在三维环境中进行加工过程碰撞干涉检测,并验证加工路径与产品加工结果的正确性。同时利用物理仿真技术还可以对零件切削过程和精度进行动态仿真与预测,并可以通过控制切削参数达到优化切削过程的目的;在钣金加工中,可对钣金成型过程中的回弹、橘皮、起皱、撕裂等问题进行模拟与预测,从而达到降低废品率,提升生产效率的目的。

  基于MBD的三维装配工艺验证与优化也是数字化仿真技术应用的一大方面,通过在三维工艺设计环境中对零部件的装配顺序、路径进行装配干涉与可达性的验证,可以在工艺设计阶段及时发现潜在设计问题。此外利用三维装配误差仿真技术,也可以在虚拟环境下进行产品装配误差分析,从而在产品装配之前就发现在产品设计、工艺规划和工艺装备中存在的问题,达到减少产品装配过程中的设计和工装更改,保证装配质量和提高装配效率的目的。

  在大型部段产品研制生产初期中,往往出现静力试验故障、产品尺寸精度与设计精度严重超差、大部段装配工艺准备过程较长、零部件生产过程中工艺问题频发等诸多质量效率问题,引起上述问题的主要有工艺设计验证手段落后、工装设计与产品不符、零件与工装齐套缓慢、设计与工艺更改频繁等原因。为了实现产品的制造质量和效率的提升,在工艺设计中引入三维数字化工艺仿真验证过程是必不可少的环节。图2所示为数字化仿真技术应用于人机装配作业。数字化工艺仿真技术是实施并行工程、精益生产、敏捷制造的需要,在产品设计的同时,并行开展工艺设计和工装研发,尽最大可能减少实物制造、装配环节中带来的风险,经国内外众多企业实践表明,工艺仿真技术能够提高产品质量、加快生产效率、减少人力物力成本,提前发现实物生产中可能发生的风险并及时制定纠正预防措施,增加制造企业的技术竞争力。因此,应从以下方面开展数字化研究工作:

  a、规范产品工艺模型MBD工艺建模标准,建立与产品设计数据的接口,形成从设计、工艺、生产到检测的单一产品数据源,用于产品全生命周期管理;

  b、从各专业工艺实际出发,建立基于三维实体模型的数字化工艺体系,满足异地协同、车间协作的需求;

  c、在MBD建模规范和数字化工艺体系基础上,延伸至车间作业管理,建立与MES的数据接口,管理生产计划执行、跟踪及所有资源的状态监控,形成车间作业全面管理监控的能力。

  四、装备设计仿真技术。

  在三维数字化设计方面,通过建立产品或生产装备的三维数字样机,利用CAE技术可对产品或生产装备的结构、振动、疲劳等特性进行数值模拟仿真与试验,在装备设计阶段就可以对产品或生产装备的性能进行验证,并可通过不断迭代修改达到满意的设计结果,实现部分或全部取代物理样机,从而尽可能降低产品研发中的潜在风险,避免工装的报废,降低投资风险,缩短产品和工装的研制周期。

  计算机装备设计仿真可在生产装备或工艺装备实体尚未制造,或者不易在实物上进行验证的情况下,通过虚拟建模技术,利用仿真模型来模仿实际系统所发生的运动过程并进行试验,在模拟环境下实现和预测产品在真实环境下的性能和特征(动态的和静态的)。通常按装备设计仿真所涉及的学科分类,将仿真分为机械设计仿真、电气设计仿真和气动液压仿真三个方面。

  五、质量检测仿真技术。

  在质量检测方面,可通过采用逆向工程技术,在计算机虚拟环境下对现场实际制造产品、测量硬件设备和加工环境进行仿真再现,并可将原有产品设计模型与实际产品物理模型进行比较,具有产品制造信息(ProductandManufacturingInformation,PMI)的MBD模型,可以方便地在三维仿真环境中进行测量规划,生成检测工序和测量路径,并可对测量规划路径进行模拟,确保测量路径的完整性和安全性,产品最终的包含检测工序、路径、方法、工具等的产品三维检测指导书也会融入到产品基于三维模型的全生命周期数据中。

  在当今的制造领域,与质量检测相关的成熟仿真技术主要应用在数字化公差仿真、坐标测量机和激光扫描设备测量数据分析方面。数字化公差仿真是一个覆盖产品设计、零件制造和装配全过程的概念,包括配合间隙(Gap/Flush)目标值的定义、零件定位方式和形位公差定义、制造装配阶段的装配偏差分析等,并且进一步延伸并影响到零件的模具设计、检具设计、夹具设计和测量设计等。图4所示为基于MBD的三维公差仿真一般过程。此外,坐标测量机和激光扫描设备可用于产品零部件的尺寸形状精度测量与评定工作,采用仿真技术可也对检测路径进行离线仿真,并辅助编写检测规划以及对测量数据进行三维可视化分析。需要注意的是,产品质量检测工作中实现数字化仿真技术的高效应用的前提是对产品MBD模型中PMI数据的有效识别、提取和复用。因此发展质量检测仿真技术,必须优先发展基于MBD的数字化制造技术。

  六、结束语。

  数字化仿真技术对硬件配套需求不多,主要用到高性能计算设备、多媒体演示设备、现场工艺指导播放设备、三维体感交互设计设备等,但对软件需求较为广泛,需要基于产品设计与数据管理*台进行统一建设,前期人力与管理成本投入较大,而一旦应用成熟,将会带来极大的效率提升和技术升级,具有较高的投入产出比。

  在三维数字化设计制造技术在带来的传统航天产品研制模式的重大变革的同时,当今航天制造中各专业领域对基于MBD的数字化仿真技术的需求也呈现越来越多样化的趋势,这给数字化仿真技术在航天制造领域的大范围应用带来了巨大的发展契机。航天制造企业应该从企业发展战略高度与产品设计单位一起从顶层自上而下地去推动数字化仿真技术的应用实施,以实现航天领域向数字化设计制造模式的变革。

试论航天精神体系(上)论文3

  一、引言

  风险有很多不同的定义:若针对某个项目,风险指在项目执行过程中可能出现的不利事件,其发生会引起该项目在限定的费用、时间和技术约束条件下无法完成甚至完全失败;而GJB5852-2006中对风险的定义是在规定的技术、费用和进度等几个约束条件下,对不利于实现装备研制目标的可能性及所导致的后果严重性的度量。从中可以归纳出风险的两个基本要素,即发生的概率和影响的大小,风险发生的概率越大、影响越严重,风险水*就越高。风险管理就是对可能遇到的各种风险进行规划、识别、评估、应对和监控的过程,是以科学的管理方法实现最大安全保障的实践活动的总称。航天器环境试验是在模拟空间环境条件下,对航天器整体或部分进行考核的一系列试验项目的总称,它涵盖的试验项目主要包括:振动、冲击、噪声、模态、热真空、热*衡、EMC、电磁兼容等。从学科来说,这些试验项目基本上涵盖了航天器有关的力学、热学、电磁学、可靠性等学科。由于不同的试验项目涉及的设备、方法、条件等因素都各不相同,这就更加提高了航天器环境试验项目的风险性。环境试验本身是降低航天器研制风险的一种手段,可以通过模拟环境条件来考核或测试产品在空间环境下的功能、性能是否满足设计要求。合理有效的环境试验可以有效降低航天器的研制风险,但是环境试验本身又会引入新的风险,可能给安全、进度、经费等带来负面影响,所以对航天器研制及环境试验进行有效的风险管理十分重要。

  二、国外航天领域风险管理的发展情况

  (一)美国国家航空航天局(NASA)的风险管理20世纪50年代,美国国家航空航天局(NASA)开始采用概率计算的方法来对航天器的可靠性进行分析,同时应用故障树方法对导弹的可靠性进行了定性分析。60年代美国开始对大型航天项目进行风险管理,主要手段是失效模式及其影响分析(FMEA)和关键相关项目表(CIL),同时NASA开始将风险分析工作制度化。到70年代,为了提高核反应堆的安全性,研究者在故障树理论的基础上开发出了故障树分析(FTA)方法,使风险分析更加量化。80年代概率风险评价(PRA)法作为一种新的定量风险分析方法被用于核工业和化学工业,但并没有引起NASA的重视和应用。但随着1986年挑战者号航天飞机发生爆炸事故造成重大损失,NASA开始采用PRA方法对航天飞机的飞行过程进行全面的风险分析。1988年2月NASA发布了管理条例8070.4“载人飞行项目中的风险管理政策”,正式将风险分析工作制度化。1998年4月,NASA发布的程序和指南NPG7120.5A“型号计划和项目的管理过程与要求”中规定计划或项目的主管人员应将风险管理作为决策工具来保证在计划和技术上的成功,将风险管理和资源管理、性能管理、采购管理、安全和任务成功、环境管理并列,并在该文件的4.2节中对风险管理的目的、要求和方法做出了详细的规定。2002年4月,NASA又颁布了NPG8000.4“风险管理程序和指南”,其中详细规定了整个风险管理过程的实施要求,这充分体现了NASA对风险管理工作的重视程度。

  (二)欧洲空间局(ESA)的风险管理欧洲空间局(ESA)成立的时间相对较晚,但也对风险管理工作十分重视,风险分析贯穿在其航天项目的各个阶段,但各阶段的侧重点有所不同。ESA在风险管理上主要借鉴了美国的概率风险分析技术,并根据实际情况进行了改进。欧洲空间标准化合作组织(ECSS)也制定了风险管理标准ECSS-M-00-03A,这说明风险管理在欧洲也已经制度化和标准化,成为航天工程中的一项重要工作。

  三、主要风险分析及管理方法

  (一)专家评估专家评估法是通过咨询本领域或相关领域的专家,依靠专家丰富的知识和实践经验,对项目中可能出现的风险进行识别、预测和分析,并对风险控制措施提出建议的一种方法。专家评估一般是与评审活动同时进行的,在根据专家意见进行风险评估时可以根据专家的水*对其评估的权重加以调整,通过综合考量多个专家的评估意见形成项目风险识别和分析结果或补充。

  (二)风险矩阵(RiskMatrixMethod,RMM)风险矩阵法是一种定性和定量相结合的风险分析方法,最早由美国空军电子系统中心于20世纪90年代提出,并在美国军方的项目风险管理中得到了广泛的应用。风险矩阵法的基本思路是将风险的两个要素(发生概率和影响)划分为若干等级,然后分别作为矩阵表的行和列,交叉后的结果就是对风险水*的综合考量结果,根据风险水*高低对风险事件进行相应的处理。

  (三)故障树分析((FaultTreeAnalysis,FTA)故障树分析技术是美国贝尔电报公司的电话实验室于1962年开发的,其主要思路是把所关注的系统风险事件作为分析的目标(即“顶事件”),然后逐级寻找直接导致风险事件发生的“中间事件”和无法或不需再深入研究的“底事件”,再用适当的逻辑关系把这些事件联系起来从而形成“故障树”,这样就能表明系统的风险事件和引发风险的众多因素之间的逻辑关系。故障树分析法可用于对风险定性分析,这时可通过故障树的生成和分析找到对风险事件出现起主要作用的底事件,然后采取相应的控制措施。故障树分析法还可以结合布尔运算对具有逻辑关系的故障树进行详细的风险定量分析。

  (四)失效模式及影响分析(FailureModeandEffectsAnalysis,FMEA)失效模式及影响分析是一种由底至顶的分析方法,是在产品的策划设计阶段,对构成产品的各子系统、零部件逐一分析,找出潜在失效模式,分析其可能的后果,从而预先采取措施以提高产品的质量的一种系统化的活动。这种方法的工作原理为:①明确潜在的失效模式,并对失效产生的后果进行评分;②客观评估各种失效原因出现的可能性;③对产品潜在的失效情况进行排序;④采取措施消除产品存在的问题。

  (五)概率风险评价(ProbabilisticRiskAssessment,PRA)概率风险评价是一种用于辨识与评估复杂系统风险的结构化、集成化的逻辑分析方法。它综合了系统工程、概率论、可靠性工程及决策理论等学科的知识,主要用于分析那些发生概率低、后果严重但统计数据比较有限的事件。PRA方法通过系统地构建事件链并对其进行量化分析来研究系统风险,事件链由一系列事件组成,这些事件孤立地看可能不严重或不重要,但如果组合在一起却可能引起严重的后果。PRA实施过程包括:定义目标与系统分析、识别初因事件、事件链建模、确定故障模式、数据收集和分析、模型量化和集成、不确定性与敏感性分析、评价结果与分析等步骤。

  四、结语

  本文介绍了风险管理在国外航天领域的发展历史,并给出了几种航天工程中常用的风险分析和管理方法。为保证航天任务的成功,除了提高相关的科学技术水*之外,风险管理水*也要同步提高,这样才能有效地控制风险,减少事故或问题出现的概率或减弱其影响。

  参考文献:

  [1]金恂叔.航天器的风险管理及其在环境试验中的应用[J].航天器环境工程,2002,19(3):1-9.

  [2]邱菀华,沈建明.现代项目风险管理导论[M].北京:电子工业出版社,2002.

  [3]史国栋,翟源景.航天试验任务风险管理研究现状分析[A].科技信息,2012(35):81.

  [4]NPG7120.5A.NASAprogramandprojectmanagementprocessesandrequirements[S].1988-4.

  [5]ECSS-M-00-03A.Spaceprojectmanagement:riskmanagement[R].2000-4.

  [6]周海京,遇今,郑恒.概率风险评价技术及应用[A].质量与可靠性,2007(6):6-8.

推荐访问:航天 试论 体系 试论航天精神体系上论文 菁选3篇 试论航天精神体系(上)论文1 简述航天精神 航天精神论点 奠定航天基础理论